

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	halostack 0.2.2 documentation

Welcome to the halostack documentation!

Very little here, but as the software gets to first master branch release, there should be more-or-less complete documentation available.

The source code of the package can be found at github [https://github.com/pnuu/halostack].

Contents

	Installation
	Testing

	Usage
	Basic usage

	Command-line options

	Configuration file

	Image processing options
	ImageMagick based methods

	Numpy based methods

	Examples
	Pyramid halo display
	Files

	Command

	Results

	Surface halo display
	Files

	Command

	Results

	No blocker
	Files

	Commands

	Results

	Planned features
	GUI

	Image input

	Image alignment

	Image enhancements

	Python3

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, 2015, Panu Lahtinen.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	halostack 0.2.2 documentation

Installation

Halostack requires the following additional software, and their own
requirements, to be installed:

python
numpy
matplotlib
imagemagick
pythonmagick
ufraw

UFRaw is needed only if RAW image formats are used. PNG, JPG and TIFF
files can be used without it.

You can download the Halostack source code from github,:

$ git clone https://github.com/pnuu/halostack.git

and then run:

$ python setup.py install

There is a command-line interface halostack_cli.py available in
the bin/ directory that can be used to interface the Halostack
libraries.

Testing

To check if your python setup is compatible with halostack,
you can run the test suite using nosetests,:

$ cd halostack
$ nosetests -v tests/

or:

$ cd halostack
$ python setup.py test

 Copyright 2014, 2015, Panu Lahtinen.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	halostack 0.2.2 documentation

Usage

Command-line interface halostack_cli.py to Halostack libraries is
available in the bin/ directory. There is also a very simple
example how to generate B-R processed image, halostack_br.py.

Basic usage

As a first step, we’ll show how the alignment reference is selected
from the first image in the stack. To start, issue the following command:

$ halostack_cli.py -a average_stack.png *.jpg

You’ll get a new window showing the first image:

[image: _images/align_reference.jpg]
It is usually helpful first to expand the window to full screen.

From the image, we need to click the two corner points of the area
having the Sun. These points are marked with plus-signs, and the
image will be closed after the second point has been selected. Try to
select the points so that the area is as tightly around the Sun as
possible, but still so that there’s some black from the blocker
included in the area.

Simililarly, we need to select the area where this reference area will
be searched from in the following images:

[image: _images/align_search_area.jpg]
This area needs to be larger than the reference area. In northern
hemishphere, the Sun (and Moon) moves towards right, so with a image
series photographed using a tripod we don’t need to add much extra
area on the left side of the reference. There’s a tradeoff in the
area size: The smaller the area is, the faster the alignment will be.
But if the area is too small, the reference might not be inside the
area, and that image will not be used in the stack. Or even worse,
there’s a similar area with good enough correlation and that feature
is selected, ruining the whole stack.

Alignment can benefit from multiple processors, see -p
command-line option.

Command-line options

python bin/halostack_cli.py [options] <list of filenames>

	-a, --average-stack
	-a average_stack.png

	output filename of the average stack

	-m, --min-stack
	-m minimum_stack.png

	output filename of the minimum stack

	-M, --max-stack
	-M maximum_stack.png

	output filename of the maximum stack

	-d, --median-stack
	-d median_stack.png

	output filename of the median stack

	-t, --correlation-threshold
	-t 0.9

	minimum required correlation

	default: 0.7

	-s, --save-images
	-s aligned_images_

	save aligned images as PNG with the given filename prefix

	this will save the images with filenames like
aligned_images_IMG_0001.png etc.

	-n, --no-alignment
	-n

	stack without alignment

	no arguments

	-e, --enhance-images
	-e gradient:20

	enhancement functions applied to each input image before alignment
and stacking

	can be called several times

	processing is done in the given order

	-E, --enhance-stacks
	-E usm:25,2

	enhancement functions applied to each stack

	can be called several times

	processing is done in the given order

	-g, --view-gamma
	-g 1.5

	adjust image gamma for alignment preview

	default: 1.0

	-C, --config
	-C config.ini

	use config file <file>

	-c, --config_item
	-c default

	select the config item to use

	-p, --nprocs
	-p <num>

	-p 4

	set number of processors to use in computationally intensive tasks
such as
	alignment

	gradient removal (blurring)

	default: 1

	unfortunately, in Windows you are limited to one thread

	<list of filenames>
	*.jpg

	images/*.*

	IMG_0001.jpg IMG_0002.jpg IMG_0003.jpg

Configuration file

Everything that can be set with the command-line options can also be
setup in a configuration file. Command-line options will override
settings obtained from the configuration file.

Below is an example configuration:

average stack from raw/tiff images with view gamma set
[avg_from_raw]
avg_stack_file = average.png
view_gamma = 1.5

average stack from linear raw/tiff images with view gamma set
and USM applied to the stack
[avg_from_raw]
avg_stack_file = average.png
view_gamma = 1.5
enhance_stacks = usm:25,2

B-R processing without stacking
[br]
avg_stack_file = ave_stack_with_br.png
no_alignment = True
enhance_stacks = gradient br

These pre-set configurations can be used like this:

$ halostack_cli.py -C <configuration file> -c <config item>

For example, using the B-R configuration defined above:

$ halostack_cli.py -C config.ini -c br

Image processing options

This tries to be a complete list of image pre- and post-processing
options available in Halostack. These enhancements can be applied
using -e and -E command-line switches, or corresponding
configuration file options enhance_images and enhance_stacks.
All the examples on the green background are used in conjunction with
these switches (eg. -e br) or given in configuration file.

It is recommended that ImageMagick based methods are used before Numpy
based in preprocessing, and vice versa in postprocessing. In this way
there’s less switching between floating point (Numpy) and integer
(ImageMagick) datatypes and less loss in data.

ImageMagick based methods

These methods rely on ImageMagick processing functions. For these to
work, the image data needs to be converted to a format recogniced by
ImageMagick, so some of the otherwise available data may be lost if
the data was previously manipulated using floating point operators.

Unsharp mask

Unsharp mask, or USM in short, is a way to enhance halos by increasing
the image contrast. USM is mostly used in postprocessing with
-E command-line switch, but some use it also in preprocessing.

The user can give the USM four parameters:

	radius of the applied Gaussian blur in pixels
	this should be about the same as the dimension of the halos,
eg. the width of parhelic circle

	amount
	fraction of the difference between the original and the blurred
image that is added back into the original

	start testing with values around 4 or 5

	sigma
	standard deviation of the Gaussian in pixels

	optional, defaults to sqrt(radius)

	threshold
	threshold above which the USM is applied

	given as a fraction of the maximum pixel value
	0.05 would mean pixel values above 11.8 for 8-bit and 3275.8
for 16-bit images

	optional, defaults to 0.0 meaning that USM is applied everywhere

The syntax is:

-E usm:radius,amount,sigma,threshold

where sigma and threshold are optional:

-E usm:25,5
-E usm:30,4,15
-E usm:40,5,20,0.05

Emboss

Emboss makes a relief of the image based on local contrast. In some
cases this can show the halos more clearly. Emboss is used in
postprocessing with -E command-line switch.

Syntax:

-E emboss:azimuth,elevation

where azimuth (default: 90) and elevation (default:
10) are optional arguments giving the location of the light
source in degrees.

Syntax:

-E emboss
-E emboss:90
-E emboss:90,20

The smaller the elevation value, the longer the “shadow” is behind the
halos and the higher the contrast. The azimuth can be adjusted to
best effect to reflect the orientation of the halos.

Use of linear stretching (stretch, see below) is usually helpful:

-E emboss -E stretch

Numpy based methods

These methods are written using mathematical functions available in
the Numpy Python library.

Blue - Red

This method is described in detail by Lefadeux [http://opticsaround.blogspot.fr/2013/03/le-traitement-bleu-moins-rouge-blue.html]. In short, the idea
is to reduce the effect of the background to enhance the colorful
(non-white) halos by subtracting red channel data from the
appropriately scaled blue channel.

Blue - Red is a postprocessing method.

In Halostack, the procedure is highly automatized, but the user still
has some possibilities to make adjustments. The basic usage is to let
Halostack determine the scaling value (restricted to be between 1.5
and 2.5):

-E br

It is also possible to give the multiplier:

-E br:1.5

To make the iteration by trial-and-error a bit faster, it is suggested
to check what is the initial estimate from the automatic version.

Green - Red

The Green - Red method is otherwise equal to the Blue - Red method
described above, but in this case the first channel is different. May
yield better results thatn Blue - Red in some cases.

Syntax:

-E gr
-E gr:1.5

Blue - Green

The Blue - Green method is otherwise equal to the Blue - Red method
described above, but in this case the channels re different. This
method can be handy when trying to reveal the fifth order rainbow
between the primary and secondary rainbows.

Syntax:

-E bg
-E bg:1.5

Gradient removal

Sky tends to have gradients. This method tries to reduce their effect
by applying a Gaussian blur to the luminance of the image and
subtracting this from all the color channels. Although each image has
different gradients, it is better to apply this method only in
postprocessing so that the images stay similar. By default the blur
radius is 1/20th of the smaller image dimension and the standard
deviation (sigma) 1/3rd of the radius:

-E gradient

The radius can be given as a parameter:

-E gradient:50

as well as the standard deviation of the kernel:

-E gradient:50,20

The smaller the sigma is, the smaller the influence of the more remote
values are. The default of 1/3rd of the radius seems to work well.

Gradient removal benefits from using multiple processors, see -p
command-line parameter.

Luminance subtraction

Luminance subtraction is also described in the magnificient article by
Lefadeux [http://opticsaround.blogspot.fr/2013/03/le-traitement-bleu-moins-rouge-blue.html]. The implementation generates a image by subtracting the
luminance (average of the color channels) from the whole image. No
arguments are used. Luminance subtraction is a postprocessing
method.

Syntax:

-E rgb_sub

RGB mixing

To augment the Luminance subtraction, it is also possible to directly
mix the luminance subtracted image with the original image to generate
more “eye friendly” and natural looking images that show colorful
halos better. The mixing ratio can be given, and if omitted, value of
f = 0.7 is used.

image = (1-f) * original + f * rgb_sub

Syntax:

-E rgb_mix
-E rgb_mix:0.5

Linear stretching

In many cases the image data has lots of “empty” in both ends of the
histrogram. With this method, it is possible to truncate the data so
that more of the useful data is retained in the output image. User
can supply the fractions of the histogram that are truncated at each
end.

If the values are not given, 1 % (or ratio of 0.01) of
the data is cut from each end:

-E stretch

which is equal to:

-E stretch:0.01,0.99

If only one value is given, the higher value is complement of this
value, eg.:

-E stretch:0.02

is equal to:

-E stretch:0.02,0.98

 Copyright 2014, 2015, Panu Lahtinen.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	halostack 0.2.2 documentation

Examples

This page shows few examples of how the stacking is used for image
sequences of halo displays.

Pyramid halo display

A pyramid halo display from April 20, 2012 by Marko Riikonen.

[image: _images/riikonen1_single.jpg]

Files

Download input images from here: riikonen1.zip [http://www.puuppa.org/~pnuu/halostack/riikonen1.zip].

Command

Generate average stack:

$ halostack_cli.py -a riikonen_ave_stack.png DSC_*

Apply unsharp mask:

$ halostack_cli.py -a riikonen1_ave_stack_usm.png -e usm:40,8 riikonen_ave_stack.png

Results

[image: _images/riikonen1_single_usm.jpg]
Single image enhanced with USM.

[image: _images/riikonen1_ave_stack_usm.jpg]
Stack enhanced with USM.

Surface halo display

[image: _images/riikonen2_single.jpg]
A surface halo display from April 9, 2012 by Marko Riikonen. For
surface halos, maximum stack typically reveals the halos better than
average stack. Here we’ll generate both, and also apply USM to the
average stack.

Files

Download input images from here: riikonen2.zip [http://www.puuppa.org/~pnuu/halostack/riikonen2.zip].

Command

Generate maximum and average stacks:

$ halostack_cli.py -M riikonen2_max_stack.png -a riikonen2_ave_stack.png U*jpg

Apply unsharp mask sharpening to the average stack:

$ halostack_cli.py -a riikonen2_ave_usm.png -e usm:30,8 riikonen2_ave_stack.png

Results

[image: _images/riikonen2_max_stack.jpg]
Maximum stack.

[image: _images/riikonen2_ave_stack.jpg]
Average stack.

[image: _images/riikonen2_ave_stack_usm.jpg]
USM enhanced Average stack.

No blocker

[image: _images/lahtinen1_single.jpg]
In this display, no blocker was used, so the reference selection needs
to be much larger and the alignment takes more time. Images by Panu
Lahtinen, April 23, 2015.

Files

Download input images from here: lahtinen1.zip [http://www.puuppa.org/~pnuu/halostack/lahtinen1.zip].

Commands

Generate average stack:

$ halostack_cli.py -a lahtinen1_ave_stack.png 2012*jpg

Apply USM:

$ halostack_cli.py -a lahtinen1_ave_stack_usm.png -e usm:20,8 lahtinen1_ave.png

Results

[image: _images/lahtinen1_ave_stack.jpg]
Average stack.

[image: _images/lahtinen1_ave_stack_usm.jpg]
Unsharp mask enhanced average stack.

 Copyright 2014, 2015, Panu Lahtinen.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	halostack 0.2.2 documentation

Planned features

This is a page listing planned, or would-be-nice-to-have, features in
a non-specifig order. No guarantees that these will be implemented.

GUI

	full graphical user interface
	help needed
	that is, need someone else to implement GUI

Image input

	read date and time from EXIF
	python-exif for linux, windows?

	separate CSV file needed for TIFF and/or windows?

	use Wand instead of PythonMagick
	provides also EXIF functionality

	possibility to give directory containing all the photos

	possibility to give image filenames/masks in config file

Image alignment

	image rotation
	scipy has the functionality, but is bloated for this single use

	search area needs adjustment?

	lens projection handling
	idealized projection, focal length, pixel size, ...

	--lens-projection rectilinear,24,1.4,...

	phase correlation for co-location

	solar/lunar tracking based on date, time, location and lens projection

Image enhancements

	apply enhancements stack-by-stack
	for example, several average stacks with different
pre/postprocessing applied

	-a avg.png -a avg_pre_usm.png -e usm:25,2 -a
avg_pre_post_usm.png -e usm:25,2 -E usm:25,2 -a avg_br.png -E
gradient,br

	bias subtraction

	flat correction
	for dust and vignetting removal

	when applying to single image, skip Stack
	also remove requirement for command-line switch for a stack

Python3

	Get things ready for Python3
	replace PythonMagick with Wand

	check other parts

 Copyright 2014, 2015, Panu Lahtinen.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	halostack 0.2.2 documentation

 Python Module Index

 h

 			

 		
 h	

 	[image: -]
 	
 halostack	

 	
 	
 halostack.align	

 	
 	
 halostack.helpers	

 	
 	
 halostack.image	

 	
 	
 halostack.stack	

 Copyright 2014, 2015, Panu Lahtinen.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	halostack 0.2.2 documentation

Index

 A
 | C
 | E
 | G
 | H
 | I
 | L
 | M
 | P
 | R
 | S
 | T

A

 	

 	add_image() (halostack.stack.Stack method)

 	Align (class in halostack.align)

 	

 	align() (halostack.align.Align method)

C

 	

 	calculate() (halostack.stack.Stack method)

E

 	

 	enhance() (halostack.image.Image method)

G

 	

 	get_filenames() (in module halostack.helpers)

 	get_image_coordinates() (in module halostack.helpers)

 	

 	get_two_points() (in module halostack.helpers)

H

 	

 	halostack.align (module)

 	halostack.helpers (module)

 	

 	halostack.image (module)

 	halostack.stack (module)

I

 	

 	Image (class in halostack.image)

 	

 	intermediate_fname() (in module halostack.helpers)

L

 	

 	luminance() (halostack.image.Image method)

M

 	

 	max() (halostack.image.Image method)

 	

 	min() (halostack.image.Image method)

P

 	

 	parse_enhancements() (in module halostack.helpers)

 	polyfit2d() (in module halostack.image)

 	

 	polyval2d() (in module halostack.image)

R

 	

 	read_config() (in module halostack.helpers)

S

 	

 	save() (halostack.image.Image method)

 	set_reference() (halostack.align.Align method)

 	

 	set_search_area() (halostack.align.Align method)

 	Stack (class in halostack.stack)

T

 	

 	to_imagemagick() (in module halostack.image)

 	

 	to_numpy() (halostack.image.Image method)

 	

 	(in module halostack.image)

 Copyright 2014, 2015, Panu Lahtinen.
 Created using Sphinx 1.3.1.

 _static/comment.png

halostack_stack.html

 Navigation

 		
 index

 		
 modules |

 		halostack 0.2.2 documentation »

Halostack Stack module

Module for image stacks

		
class halostack.stack.Stack(mode, num, nprocs=1)

		Bases: object

Class for image stacks.

		Parameters:		
		mode (str) – type of the stack

		num (int) – maximum number of images to be added

Available stack types are:

'min' - minimum stack
'max' - maximum stack
'mean' - average stack
'median' - median stack

		
add_image(img)

		Add a frame to the stack.

		Parameters:		img (halostack.image.Image) – image to be added to stack

		
calculate()

		Calculate the result image and return Image object.

		Return type:		halostack.image.Image

 © Copyright 2014, 2015, Panu Lahtinen.
 Created using Sphinx 1.3.1.

_static/ajax-loader.gif

_images/lahtinen1_ave_stack_usm.jpg

_static/comment-bright.png

halostack_helpers.html

 Navigation

 		
 index

 		
 modules |

 		halostack 0.2.2 documentation »

Halostack Helper module

Misc helper functions

		
halostack.helpers.get_filenames(fnames)

		Get filenames to a list. Expand wildcards etc.

		Parameters:		fnames (list of strings) – list of filenames or wildcard strings

		Return type:		list of strings

		
halostack.helpers.get_image_coordinates(img_in, num)

		Get num image coordinates from users’ clicks on the image.

		Parameters:		
		img_in (Numpy array) – input image

		num (int) – number of coordinates to collect

		
halostack.helpers.get_two_points(img_in)

		Get two image pixel coordinates from users’ clicks on the
image, and return them as 3-tuple:
(mean(xs), mean(ys), max(abs_diff(xs), abs_diff(ys))/2.

		Parameters:		img_in (Numpy array) – input image

		Return type:		3-tuple

		
halostack.helpers.intermediate_fname(prefix, fname)

		Form filename for the aligned image files.

		Parameters:		
		prefix (str) – prefix to prepend to the basename of the file.

		fname (str) – filename, with or without the path

		Return type:		new filename as a string

		
halostack.helpers.parse_enhancements(params)

		Parse image enhancements and their parameters, if any.

		Parameters:		params (list of strings) – list of enhancement names and parameters

		Return type:		ordered dictionary

example of params: [‘usm:20,8’, ‘br’]

		
halostack.helpers.read_config(args)

		Read and parse configuration from a file given in args and
update the argument dictionary.

		Parameters:		args (dictionary) – command-line arguments

		Return type:		dictionary with updated arguments

 © Copyright 2014, 2015, Panu Lahtinen.
 Created using Sphinx 1.3.1.

_images/lahtinen1_single.jpg

_static/plus.png

_images/riikonen1_ave_stack_usm.jpg

_static/up-pressed.png

_images/lahtinen1_ave_stack.jpg

_static/up.png

_images/align_reference.jpg

_static/down.png

_images/riikonen1_single.jpg

_images/riikonen2_ave_stack_usm.jpg

halostack_image.html

 Navigation

 		
 index

 		
 modules |

 		halostack 0.2.2 documentation »

Halostack Image module

Module for image I/O and conversions

		
class halostack.image.Image(img=None, fname=None, enhancements=None, nprocs=1)

		Bases: object

Class for handling images.

		Parameters:		
		img (ndarray or None) – array holding image data

		fname (str or None) – image filename

		enhancements (dictionary or None) – image processing applied to the image

		nprocs (int) – number or parallel processes

		
enhance(enhancements)

		Enhance the image with the given function(s) and argument(s).

		Parameters:		enhancements (dictionary) – image processing methods

Available image processing methods:

		br: Blue - Red

		possible calls:
		{'br': None}

		{'br': float}

		optional arguments:
		float: multiplier for blue channel [mean(red/green)]

		gr: Green - Red

		possible calls:
		{'gr': None}

		{'gr': float}

		optional arguments:
		float: multiplier for red channel [mean(green/red)]

		bg: Blue - Green

		possible calls:
		{'bg': None}

		{'bg': float}

		optional arguments:
		float: multiplier for blue channel [mean(blue/green)]

		emboss: emboss image using ImageMagick

		possible calls:
		{'emboss': None}

		{'emboss': float}

		{'emboss': [float, float]}

		optional arguments:
		float: light source azimuth in degrees [90]

		float: light source elevation in degrees [45]

		gamma: gamma correction using ImageMagick

		possible calls:
		{'gamma': float}

		required arguments:
		float: gamma value

		gradient: remove image gradient

		possible calls:
		{'gradient': None}

		{'gradient': float}

		optional arguments:
		float (blur radius) [min(image dimensions)/20]

		rgb_sub: Subtract luminance from each color channel

		possible calls:

{'rgb_sub': None}

		rgb_mix: Subtract luminance from each color channel and mix it
back to the original image

		possible calls:

{'rgb_mix': None}
{'rgb_mix': float}

		optional arguments:

		float: mixing ratio [0.7]

		stretch: linear histogram stretch

		possible calls:
		{'stretch': None}

		{'stretch': float}

		{'stretch': [float, float]}

		optional arguments:
		float: low cut threshold [0.01]

		float: high cut threshold [1 - <low cut threshold>]

		usm: unsharp mask using ImageMagick

		possible calls:
		{'usm': [float, float]}

		{'usm': [float, float, float]}

		{'usm': [float, float, float, float]}

		required arguments:
		float: radius

		float: amount

		optional arguments:
		float: standard deviation of the gaussian [sqrt(radius)]

		float: threshold [0]

		
luminance()

		Return luminance (channel average) as Numpy ndarray.

		Return type:		Numpy ndarray

		
max()

		Return the maximum value in the image.

		Return type:		float

		
min()

		Return the minimum value in the image.

		Return type:		float

		
save(fname, bits=16, enhancements=None)

		Save the image data.

		Parameters:		
		fname (str) – output filename

		bits (int) – output bit-depth

		enhancements (dictionary or None) – image processing applied to the image before saving

		
to_numpy()

		Convert from PMImage to Numpy ndarray.

		
halostack.image.polyfit2d(x_loc, y_loc, z_val, order=2)

		Fit a 2-D polynomial to the given data.

Implementation from: http://stackoverflow.com/a/7997925

		Parameters:		
		x_loc (list or ndarray) – X coordinates

		y_loc (list or ndarray) – Y coordinates

		z_val (list or ndarray) – Z values at (X, Y)

		order (integer) – order of the polynomial

		Return type:		list of polynomial coefficients as floats

		
halostack.image.polyval2d(x_loc, y_loc, poly)

		Evaluate 2-D polynomial poly at the given locations

Implementation from: http://stackoverflow.com/a/7997925

		Parameters:		
		x_loc (list or Numpy array) – X coordinates

		y_loc (list or Numpy array) – Y coordinates

		poly (list of floats) – polynomial coefficients

		
halostack.image.to_imagemagick(img, bits=16)

		Convert numpy array to Imagemagick format.

		Parameters:		img (Numpy ndarray) – image to convert

		Return type:		PythonMagick.Image

		
halostack.image.to_numpy(img)

		Convert ImageMagick data to numpy array.

		Parameters:		img (PythonMagick.Image) – image to convert

		Return type:		Numpy ndarray

 © Copyright 2014, 2015, Panu Lahtinen.
 Created using Sphinx 1.3.1.

halostack_align.html

 Navigation

 		
 index

 		
 modules |

 		halostack 0.2.2 documentation »

Halostack Align module

Module for coaligning images

		
class halostack.align.Align(img, cor_th=70.0, mode='simple', nprocs=1)

		Bases: object

Class to coalign images

		Parameters:		
		img (halostack.image) – reference image

		ref_loc (3-tuple or None) – reference location

		srch_area (3-tuple or None) – reference search area

		cor_th – correlation threshold

		mode (str) – alignment method

		nprocs (int) – number or parallel processes used for finding best fit

Available alignment methods are:

'simple'

		
align(img)

		Align the given image with the reference image.

		Parameters:		img (halostack.image.Image) – image to align with the reference

		
set_reference(area)

		Set the reference area area.

		Parameters:		area (list or tuple) – 3-tuple of the form (x, y, radius)

		
set_search_area(area)

		Set the reference search area area.

		Parameters:		area (list or tuple) – 3-tuple of the form (x, y, radius)

 © Copyright 2014, 2015, Panu Lahtinen.
 Created using Sphinx 1.3.1.

_images/align_search_area.jpg

_images/riikonen2_single.jpg

_images/riikonen2_ave_stack.jpg

search.html

 Navigation

 		
 index

 		
 modules |

 		halostack 0.2.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, 2015, Panu Lahtinen.
 Created using Sphinx 1.3.1.

_images/riikonen1_single_usm.jpg

modules.html

 Navigation

 		
 index

 		
 modules |

 		halostack 0.2.2 documentation »

Halostack

		Halostack Image module

		Halostack Align module

		Halostack Stack module

		Halostack Helper module

 © Copyright 2014, 2015, Panu Lahtinen.
 Created using Sphinx 1.3.1.

_images/riikonen2_max_stack.jpg

_static/minus.png

_static/comment-close.png

_static/down-pressed.png

_static/file.png

